Determining factors in the adoption of Artificial Intelligence in Dominican higher education
Keywords:
artificial intelligence, higher education, innovation, attitudes, technology, AI ethics, digital competenciesAbstract
Given the growing importance of this technology and the scarcity of studies in this context, this research examines the determining factors in the effective adoption of Artificial Intelligence (AI) in Dominican higher education. Using a quantitative approach, a sample of 101 university professors was analyzed using partial least squares structural equation modeling (PLS-SEM). The results reveal teachers' attitudes towards AI and institutional support are the most significant predictors of effective adoption. Digital skills showed a significant indirect effect through attitudes, while technological infrastructure showed minimal impact. The findings suggest that strategies to promote AI adoption should prioritize the development of positive attitudes among teachers and the strengthening of institutional support, beyond the mere provision of technology. The study contributes to the understanding of AI adoption in specific higher education contexts and provides a basis for future comparative research.
Metrics
References
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Baker, R., & Hawn, A. (2022). Algorithmic Bias in Education. International Journal of Artificial Intelligence in Education, 32(4), 1052–1092. https://eric.ed.gov/?id=EJ1353563
Chin, W. (1998) The Partial Least Squares Approach to Structural Equation Modeling. Modern Methods for Business Research, 2, 295–336.
Cladis, A. (2020). A shifting paradigm: An evaluation of the pervasive effects of digital technologies on language expression, creativity, critical thinking, political discourse, and interactive processes of human communications. E-Learning and Digital Media, 17(5), 341–364. https://doi.org/10.1177/2042753017752583
Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Dwivedi, Y., Rana, N., Jeyaraj, A., Clement, M., & Williams, M. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
European Commission (2018). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions on Artificial Intelligence for Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:237:FIN
Fang, H., Sánchez-Prieto, J. C., Teo, T., García-Peñalvo, F. J., Olmos-Migueláñez, S., & Zhao, C. (2021). A cross?cultural study on the in?uence of cultural values and teacher beliefs on university teachers’ information and communications technology acceptance, Education Tech Research and Development, 69(1271–1297). https://doi.org/10.1007/s11423-021-09941-2
Fernández-Batanero, J., Montenegro-Rueda, M., Fernández-Cerero, J., & García-Martínez, I. (2020). Digital competences for teacher professional development. Systematic review. European Journal of Teacher Education, 43(4), 1–19. https://doi.org/10.1080/02619768.2020.1827389
Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Goksel, N., & Bozkurt, A. (2019). Artificial intelligence in education: Current insights and future perspectives. En S. Sisman-Ugur & G. Kurubacak (Eds.). Handbook of Research on Learning in the Age of Transhumanism (pp. 224–236). IGI Global. https://doi.org/10.4018/978-1-5225-8431-5.ch014
Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage.
Henseler, J., Ringle, C., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Herodotou, C., Maguire, C., McDowell, N., Hlosta, M., & Boroowa, A. (2021). The engagement of university teachers with predictive learning analytics. Computers & Education, 173. https://doi.org/10.1016/j.compedu.2021.104285
Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S., & Koedinger, K. (2022). Ethics of AI in education: Towards a community-wide framework. International Journal of Artificial Intelligence in Education, 32(3), 504–526. https://doi.org/10.1007/s40593-021-00239-1
Huang, M.-H., Rust, R., & Maksimovic, V. (2019). The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI). California Management Review, 61(4). doi.org/10.1177/0008125619863436
Johnson, J., Ioannou, A., Voisey, R., & Pirini, J. (2021). Theories and frameworks informing educational technology research and development. Computers & Education, 175. https://doi.org/10.1016/j.compedu.2021.104320
Kaliisa, R., Picard, M., & Griffiths, D. (2022). Artificial intelligence in education: A systematic review of professional learning approaches for teachers. Computers and Education: Artificial Intelligence, 3, 100067.
Krumsvik, R. (2020). Teacher educators’ digital competence. En H. Spires (Ed.), Digital transformation and innovation in Chinese education (pp. 257–275). IGI Global.
Lai, C. (2022). Extending the technology acceptance model to understand university teachers' intentions to use artificial intelligence in education. Education and Information Technologies, 27(3), 3375–3396. https://doi.org/10.1007/s10639-021-10724-8
Liu, Q., Chen, S., & Wang, Q. (2021). The adoption of artificial intelligence in higher education: A study on institutional factors and academic staff's perceptions. Journal of Educational Technology & Society, 24(3), 150–164.
Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences?driven approach. British Journal of Educational Technology, 50(6), 2824–2838. https://doi.org/10.1111/bjet.12861
MacKenzie, S., Podsakoff, P., & Podsakoff, N. (2011). Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques. MIS Quarterly, 35(2), 293–334. https://doi.org/10.2307/23044045
Medina, F. (2024). Escritura de microrrelatos con apoyo de inteligencia artificial. Cuaderno de Pedagogía Universitaria, 21(42), 7–24. https://doi.org/10.29197/cpu.v21i42.594
Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.
Morin, A., Marsh, H., & Nagengast, B. (2023). Exploratory structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed., pp. 452–472). Guilford Press.
Nazaretsky, T., Cukurova, M., Ariely, M., & Alexandron, G. (2022). Artificial intelligence in education: Teachers’ knowledge, attitudes, and intentions to use. Computers and Education: Artificial Intelligence, 3, 100067.
Nye, C., Butt, S., Bradburn, J., & Prasad, J. (2018). Interests as predictors of performance: An omitted and underappreciated variable. Journal of Vocational Behavior.
Pérez, R., Mercado, P., Martínez, M., Mena, E. y Partida, J. (2022). La innovación y la competitividad de las instituciones de educación superior: Perspectiva desde la innovación abierta. Revista Iberoamericana de Educación Superior, 13(36), 40–54. https://doi.org/10.22201/iisue.20072872e.2022.36.1184
Pérez-Escoda, A., & Fernández-Villavicencio, N. (2016). Digital competence in use: From DigComp 1 to DigComp 2. En F. García-Peñalvo (Ed.), Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 619–624). Association for Computing Machinery.
Prinsloo, P., & Slade, S. (2022). Ethics and privacy in learning analytics: Mapping the field and critical perspectives on ethics and privacy in learning analytics. En C. Lang (Ed.), Handbook of Learning Analytics (pp. 243–252). Society for Learning Analytics Research.
Ramírez-Montoya, M., Rodríguez-Abitia, G., López-Caudana, E., & De León, L. (2021). Artificial Intelligence in Higher Education: A Systematic Literature Review. Proceedings of the 9th International Conference on Technological Ecosystems for Enhancing Multiculturality, 406–411.
Redecker, C. (2017). European framework for the digital competence of educators: DigCompEdu (Issue JRC107466).
Reich, J. (2020). Failure to Disrupt: Why Technology Alone Can’t Transform Education. Harvard University Press.
Ringle, C., Wende, S., & Becker, J. (2023). SmartPLS 4.
Rodríguez, M. y Gómez, V. (2023). Políticas educativas y prácticas docentes: Un análisis de la brecha entre el discurso y la realidad en la educación superior dominicana. Revista Latinoamericana de Políticas y Administración de la Educación, 10(18), 62–76.
Rogers, E. (2003). Diffusion of innovations (5th ed.). Free Press.
Sánchez-Cruzado, C., Bonetti, S., Sánchez-Campaña, M. y Santiago, R. (2021). Análisis de competencias digitales de docentes de la provincia de Misiones: el reto de la nueva alfabetización. Virtualidad, Educación y Ciencia, 23(12), 8–32.
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009
Selwyn, N. (2016). Education and technology: Key issues and debates. Bloomsbury Academic. https://doi.org/10.1007/s11159-022-09971-9
Selwyn, N. (2019). What’s the problem with learning analytics? Journal of Learning Analytics, 6(3), 11–19. https://doi.org/10.18608/jla.2019.63.3
Selwyn, N. (2023). Should robots replace teachers? AI and the future of education. John Wiley & Sons.
Sharma, B., & Mantri, A. (2020). Assimilating disruptive technology: A new approach of learning science in engineering education. Procedia Computer Science, 172, 915-921.
Silva, M., Correa, R., & Mc-Guire, P. (2024). Metodologías Activas con Inteligencia Artificial y su relación con la enseñanza de la matemática en la educación superior en Chile. Estado del arte. Revista Iberoamericana de Tecnología En Educación y Educación En Tecnología, 37, e2–e2. https://doi.org/10.24215/18509959.37.E2
Straub, D., Loch, K., Evaristo, R., Karahanna, E., & Srite, M. (2002). Toward a theory-based measurement of culture. Journal of Global Information Management, 10(1), 13–23. https://doi.org/10.4018/jgim.2002010102
Teo, T., Zhou, M., & Noyes, J. (2021). Teachers’ acceptance of AI in education: An extended technology acceptance model. Interactive Learning Environments, 1–17.
Tsai, Y., Rates, D., Moreno-Marcos, P., Muñoz-Merino, P., Jivet, I., Scheffel, M., & Gaševi?, D. (2022). Learning analytics in European higher education: Trends and barriers. Computers & Education, 155, 103891. https://doi.org/10.1016/j.compedu.2020.103933
VanderLinde, G. y Mera, T. (2024). El uso de inteligencia artificial y sus desafíos para la evaluación académica: una revisión de la literatura. Cuaderno De Pedagogía Universitaria, 21(41), 126–137. https://doi.org/10.29197/cpu.v21i41.564
Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https://www.sciencedirect.com/science/article/pii/S0747563218303492
Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995
Winkler, R., & Sollner, M. (2018). Unleashing the Potential of Chatbots in Education: A State-of-the-Art Analysis. Proceedings 2018. https://doi.org/10.5465/AMBPP.2018.15903abstract
Yadegaridehkordi, E., Nilashi, M., Shuib, L., & Hairul, M. (2019). The Impact of Big Data on Firm Performance in Hotel Industry. Electronic Commerce Research and Applications, 40(3). doi.org/10.1016/j.elerap.2019.100921
Zawacki-Richter, O., Marín, V., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., & Pushpanadham, K. (2021). A review of artificial intelligence. https://doi.org/10.1155/2021/8812542
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Unless otherwise indicated, all articles in this journal are published under a
Licencia Internacional Creative Commons 4.0 Atribución-NoComercial-CompartirIgual .
The authors retain the copyright and assign the right to the first publication to the magazine.